Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhen-Zhong Fan, ${ }^{\text {a }}$ Xin-Hua Li ${ }^{\text {b }}$ * and Guo-Ping Wang ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Petroleum Engineering, Daqing Petroleum Institute, Daqing 163318, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.079$
$w R$ factor $=0.156$
Data-to-parameter ratio $=6.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Trimesic acid dihydrate

The title compound, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of trimesic acid molecules and water molecules of crystallization, linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions into a three-dimensional network structure.

Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga \& Grepioni, 2000). In this paper, we report the structure of trimesic acid dihydrate, (I).

The title compound consists of trimesic acid molecules and solvent water molecules (Fig. 1). In the crystal structure there are $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bond interactions (Table 2), generating a three-dimensional network structure (Fig. 2).

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of trimesic acid (0.3 mmol), 2,2-bipyridine (0.3 mmol), $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$ and water $(8.0 \mathrm{ml})$ in a 15 ml Telfonlined stainless steel reactor. The solution was heated at 423 K for 4 d . After reaction, the vessel was cooled slowly to room temperature to give colorless crystals. Prismatic crystals were collected, washed with distilled water and dried in air.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=246.17 \\
& \text { Orthorhombic, } \text { Pna }_{1} \\
& a=21.000(4) \AA \\
& b=13.343(2) \AA \\
& c=3.6863(6) \AA \\
& V=1032.9(3) \AA^{3} \\
& Z=4 \\
& D_{x}=1.583 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Figure 1
The structure of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Figure 2
Perspective view of the network structure of (I), showing the intermolecular hydrogen-bond interactions as dashed lines.

Data collection

Bruker SMART APEX area-	1079 independent reflections
\quad detector diffractometer	950 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.059$
Absorption correction: multi-scan	$\theta_{\max }=25.1^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-24 \rightarrow 25$
$T_{\min }=0.98, T_{\max }=0.99$	$k=-15 \rightarrow 14$
5259 measured reflections	$l=-4 \rightarrow 4$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0444 P)^{2}\right. \\
& \quad+2.4467 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.044 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.156$
$S=1.20$
1079 reflections
169 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C8	$1.298(8)$	O4-C9	$1.309(7)$
O2-C8	$1.211(7)$	O5-C1	$1.264(7)$
O3-C9	$1.201(7)$	O6-C1	$1.234(7)$
O6-C1-O5	$122.8(5)$	O3-C9-C4	$124.8(6)$
O2-C8-O1	$123.4(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.90 (5)	2.01 (7)	2.853 (9)	157 (11)
O7-H7B \cdots O6	0.84 (5)	2.00 (7)	2.805 (7)	162 (14)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.89 (5)	2.13 (6)	2.980 (8)	160 (10)
O8-H8A \cdots O 7	0.89 (5)	1.91 (5)	2.801 (9)	173 (11)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.82	1.81	2.580 (6)	156
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}{ }^{\text {iii }}$	0.82	1.73	2.528 (6)	164
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 8^{\text {iv }}$	0.82	2.06	2.845 (9)	160

The water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (5) \AA. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). In the absence of significant anomalous dispersion effects, the Friedel pairs were merged before refinement.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.
Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2315.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

